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Abstract-The argument of discontinuous bifurcation is normally formulated for detecting spatial
discontinuities in the interior of an infinite solution domain. This paper expands localization analysis
to a finite domain in which the translatory notion of classical continua is enriched by independent
microrotations in the spirit of Cosserat continua. The bifurcation condition for the interior is
augmented by complementing conditions at the boundaries and at material interfaces.

In analogy to the equivalent propagation argument for Rayleigh surface waves and Stoneley
waves within the traditional format of elasto-plasticity (see Needleman, A. and Ortiz, M. (1991).
Effect of boundaries and interfaces on shear-band localization. Int. J. Solids Struct. 28, 859-877)
the current study develops the complementing propagation conditions for the micropolar Cosserat
description of elasto-plasticity. To this end, their singularities are examined in terms of stationary
Rayleigh surface waves and Stoneley waves at interior interfaces. © 1997 Elsevier Science Ltd. All
rights reserved.

I. INTRODUCTION

The formation of spatial discontinuities in rate-independent solids is commonly regarded
as a local bifurcation problem (Rice, 1977). Aside from failure modes which are char­
acterized by continuous deformation gradients, other failure modes may develop which
exhibit a discontinuity in the field of deformation gradients across a singular surface
preceding fracture. This discontinuity causes loss of ellipticity which results in strong mesh
dependence in numerical computations.

To regularise the formation of discontinuity non-classical continuum theories like the
micropolar theory by Cosserat (1909) and Eringen (1966) have been advocated. This theory
introduces a characteristic length in a natural manner and describes the failure process in
the vicinity of the localized deformation zone so that a non-local description results.

The analysis of discontinuities across the singular surface in micropolar continua leads
to localization conditions which differ from those ofclassical continua in a basic sense. Not
only the localization tensor has to be augmented to account for discontinuities of both the
translatory velocity gradient as well as the rate of rotation gradient. There is also a
second localization condition which has to be satisfied simultaneously and which plays an
outstanding role to regularize localization. A formulation of a special case is presented in
Dietsche et al. (1993) and Steinmann and Willam (1991).

From wave analysis of classical continua, it is well established that the onset of
localization in an infinite continuum has an analogy with the fortnation of stationary body
waves (see Hill (1962) and Rice (1977». This paper focuses on the analogy between
discontinuous bifurcation and stationary waves in micropolar continua with specific interest
in the complementing conditions of stationary waves at the boundaries and at interior
interfaces. To present the general form which exhibits the complete identity between the
argument of stationary waves and spatial bifurcation conditions the basic formulas are
reviewed. Starting point here is the integral consideration ofa finite body which in a natural
way leads to the differential equations in the interior and at the boundary.
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2. CONSTITUTIVE EQUATIONS

Micropolar continua are characterized by rotational degrees of freedom Q) = [ev;],
which are independent of the translation u = [u;]. The stress-tensor (1 = [(1ij] is non-sym­
metric because of the appearance of couple-stresses Jl = [jlij]. Consequently, the equations
of motion including translatory as well as rotatory inertia effects are, in index notation,

(1)

where Q denotes the translatory mass density, e the rotatory mass density and e = [eijk] the
permutation symbol. The kinematic description of independent microrotations leads to the
loss of symmetry of the strain tensor £ = [eij] and to the field of microcurvatures K = [KiJ
so that

(2)

(see Fig. 1). It has to be mentioned that, in this context, the couple-stress tensor Jl as well
as the curvature tensor K are both symmetric, otherwise their skewsymmetric parts would
be undetermined.

To describe elasto-plastic behavior a non-symmetric extension of Jrplasticity is
adopted based on an associated flow rule (see also Besdo (1974)). The yield condition
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Fig. 1. Static (above) and kinematic (down) conditions.
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couples the stress-strain and the couple-stress-eurvature relations in terms of a single
function of stress and of couple-stress F = F(a, p) = O.

Introducing the non-symmetric deviatoric stresses S = [SijJ the yield condition

[ (
1 1 ))1/2

F(a,p) = 3 2s :s+ 2/~./:P -Yo =0, (3)

with Yo as yield stress, guarantees full coupling of non-symmetric stresses with symmetric
couple-stresses. Expressing the two flow rules for the plastic strain and the plastic curvature
rates in terms of a common plastic multiplier, the governing elasto-plastic rate equations
may be cast into the partitioned form

(4)

(see also Dietsche et al. (1993)), where Eep = [E;IJ, D; = [D1jkIJ, D; = [D1j:tl and
Cep = [C;tl represent the elasto-plastic tangential material stiffness tensors:

E = E- (E: m".) @(n.r:E)
ep Ep+ 0" : E :m" +0,u : C : m,u ,

DK _ _ (E: m,,) ®(0,u :C)
p - Ep+n.r :E:m,,+0,u :C:m,,'

De = _ (C:m,,)®(o,,:E)
p Ep+o,,:E:m,,+o,u:C:m,,'

According to (3), the two tensors

" 3 3
0" = [nuJ = .fiif [Sj,J, 0" = [nriJ = J3jf[Pji], 2 3 n' r , 2/2 3 T* 'Ji e Ji

(5)

(6)

(7)

(8)

(9)

including .J! = (1/2)sijsij+ (1/2t;)Jl.ijJl.ij denote the derivatives of the yield condition with
regard to a and p and m" = [mijJ, mIl = [m1jJ the derivatives of the plastic potential with
regard to a and p.

The identity tensors 12 = [b,J, 14m = 1/2([bik bjtl + [b il bjkJ) and I~kw = 1/2([bik bjlJ­
(b il bjkJ) define isotropic linear Cosserat elasticity in terms of the stiffness moduli E = [Eijkl]
and C = [C;jktl with

(10)

as functions of the Lame constants A., Jl. = G, the Cosserat shear modulus Ge and the
characteristic length Ie,s> while Ep denotes the hardening-softening-modulus of isotropic
plasticity.

In the case of an associated flow rule (m" = 0", m,u = 0,u), the plastic coupling operators
D; and D; are related by



880 A. Dietsche and K. Willam

(11)

which designates symmetry, i.e., in matrix notation n; = (n;)T. With the help of the
identities

(12)

(where Asym = Ij2([Ad + [AjJ) is any symmetric tensor) the elasto-plastic tensor (5) extends
to

with

n~m = [nijym] = Ij2([nij] + [nfi]), .r.-kw = [nijoskw] = Ij2([nij] - [nft]),

n;:m = [nt·sym] = Ij2([nt] + [nj;]) (14)

for isotropic behavior. Consequently, the two plastic coupling material operators (6) and
(7) can be explicitly evaluated as

n; = -(4Gl;)b)(Gn~m+Gen~kw) ® n>;m,

n; = -(4GI;,sjb)nS;m ®(Gn~m+Gen~kw),

and the elasto-plastic curvature material tensor (8) yields

(15)

(16)

Note, that two characteristic lengths arise: besides the static length Ie,s in C, the rotary
mass density e includes a dynamic characteristic length leod which is found in the definition
of rotary inertia effects,

1f 2 2e = V mr dm = le,dQ (17)

with Vas volume of the finite body, m as its mass and r as the radius. This dynamic length
has no immediate geometrical meaning. It describes the influence of the rotary inertia in
the smallest non-deformable region of the continuum represented by a mass point.

3. LOCAUZATION CONDITIONS

In the following, two localization conditions are developed. They can be derived from
the assumption of a singularity surface Fs(x) = 0 which separates the continuum into two
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Fig. 2. Singularity surface (left) and assumed discontinuities of displacement and rotation gradient
(right).

regions ~+ and ~- with a common boundary S (see Fig. 2, left). Across this singularity
surface, abrupt changes, respectivelY,jumps in the values offield variables, or their deriva­
tives, occur, whereby outside of the surface, this field is assumed to be steady. Discontinuities
in the form of jumps in the gradient fields of displacement and rotation rates across the
singular surface are permitted (see, for the two dimensional case, Fig. 2, right). To establish
the general form of the localization conditions let us review the basic balance laws.

First, the integral form of the balance of linear momentum is applied to a finite body
containing a singularity surface:

d
d r QlidV= dd r QlidV+ dd r QlidV= r bfdV+l ooadA
t J!B t J!B+ t J!B- J!B Jo'!l

(18)

=0

where Ii denotes the translational velocity, bf = [bf,;] represents the forces per volume and
0= [n;] the surface direction vector. For the further considerations, it is necessary to
augment the equation above by the zero value extension which includes the jump expression
'U' describing the difference between the marked field variables on the plus and minus side
of the singularity surface. The integral balance equations for each part of the separated
body are

d
d r QlidV= r bfdV+ r ooadA-f ooa-dA
t J!B- Jll- Ja!B- S

= r bfdV+ r divadV = O.
J'!l- J!B-

(19)

Applying this equation to (18) with omitted body and inertia forces, all integrals vanish
except the one with the jump expression. Further, regularity of the integrand leads to the
usual equilibrium argument of Cauchy in rate form
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[0 'a] = 0, (20)

which forms one part of the jump condition.
The second part of the static jump argument arises if the balance ofangular momentum

for the finite body

d
d r Qr d V = dd r Qr d V+ dd r Qr dV = r e: t1 dV+ l 0'" dA
tJ!ll tJ!ll+ tJ!ll- J!ll ja!ll

(21)

=0

is regarded whereby r = [rjl = 6Jl;.d denotes with (17) the rotational inertia and bm = [bm.J
the moments per volume. Again, augmentation of the angular balance law by the zero
value extension is needed to formulate the jump condition. As the balance equation holds
for both parts of the body, we can write

d
d r QrdV= r (e:t1+bm)dV+ r o,,,dA+ ro,,,+dA
t J!ll+ J!ll+ Ja!ll+ Js

= r (e:t1+bm )dV+ r div"dV= 0 (22)
J~+ J~+

and

d
d r QrdV= r (e:t1+bm)dV+ r o,,,dA- ro,,,-dA
t J!ll- J!ll- Ja!ll- Js

= L- (e:t1+bm )dV+L- div"dV= O. (23)

Omitting volume and inertia terms in (21) we are left with the jump expression in the rate
form

[o'Jt]=0 (24)

as a second part of the jump condition.
To describe the stress and couple stress rate fields on both sides of the singularity

surface with respect to the jumps of this fields across the surface it is possible to define
bifurcated stress and couple stress fields such that

a+(x) = a(x) + (,,(xs)[a(xs)], a-(x) = a(x)+«(,,(xs)-I)[a(xs)],

Jt+ (x) = Jt(x) + (Jl(Xs)[Jt(xs)], jC (x) = Jt(x) + «(Jl(xs) - 1)[Jt(xs)]. (25)

The scalar fields (,,(xs) and (ixs) describe the jump magnitude across the singularity
surface, and Xs = {XE 1R3 1Fs(x) = O}. Hence, it follows that X-Xs = tgradFs represents
the parametric form of the normal of the singularity surface. With this, the stress and
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couple stress state of each volume element outside the singularity surface is additively
enhanced by the stress and couple stress states of a point on the singularity surface which
is obtained by orthogonal projection from the volume element to the surface.

For the further evaluations only one side of the finite body is regarded. Neglecting
inertia terms and forces per volume the balance equation for linear momentum can be
rewritten with

and the balance equation for angular momentum without moments per volume yields

= r (e:O'+divjt+,~e:[O']+'l'div[jt])dV=O. (27)
J!B+

For the integrand, regularity is assumed, which allows us to use the differential form.
Applying (19)1> (22) to (26), (27) a further jump condition,

div[O'] = 01\ e: [O']+div[jt] = 0, (28)

is established. Obviously this result can also be obtained if the expressions related to m­
are used.

In this context, the concept of a singularity surface of order two with respect to the
translational degrees of freedom has to be enriched by a second spatially identic singularity
surface of order one concerning the rotational degrees of freedom. This is enforced by
the kinematic condition (2)1 which requires interaction between the magnitudes of the
translational field and the rotational field.

The material time derivative

(29)

differs from the local time derivative of the rotational degree offreedom (owFjt) + by the
convective term vWnjwtj' The difference for both sides of the finite body leads to the
kinematic condition of compatibility (see Thomas, 1957)

d[w] [ow.]--' = -' +vwn.[w..] = [w]+vw[n.w..]dt 0t J '.J , J '.J
(30)

with n = [nJ as the direction of the singularity surface and vW as the scalar normal component
of the propagation rate. The field CJ) is assumed to be continuous ([Wi] = 0) so that

(31)

holds. This expression makes evident that a jump in velocity or rate is always connected
with a jump in the deformation gradient.

The Maxwell compatibility conditions (see Maxwell, 1873) introduce, besides the
direction vector N = [Nj ], also the amplitude vector M = [M;] which yields for a singularity
surface of order two with respect to any vector field 4>i(X i , t)



884 A. Dietsche and K. Willam

[ • ] '4> 4>cPj,j = -y M j N j , (32)

and a singularity surface of order one is expressed by

[
.] • 4>cPj = -ycPMj. (33)

With this definition first the jump conditions (20) and (24) are regarded (with N j = nj
and yW = yU = y). Combining them with the kinematic equations (2) and the tangential
material law (4), the application of (32) and (33) results in

[N 0 0'] = N'Eep : [t]+N·n;: [k]

= N'Eep :(N ® MU-e'MW)+Non;:(N ® MW) = 0,

[N' it] = Non;: [t]+N' Cep : [k]

= Non; :(N ® MU-e'MW)+N'Cep :(N ® MW) = O. (34)

With M = [Mu, MW], this expression can be written by QJ(. M = 0 so that

[
QJ,ee ~,ec - N . Eep :eJ[Mu ]
QJ,ce QJ,cc -N 0 n;:e MW = O.

(35)

This denotes the first localization condition. To guarantee a solution of this homogeneous
set of linear equations, the determinant of ~I = [Qm has to vanish. Here, the sub­
operators are

(36)

Considering the jump condition (28), a second condition for the onset of localization arises.
If the kinematic equations (2) and the tangential material law (4) are used together with
the Maxwell compatibility conditions (32) and (33), the jump conditions (28) render

and

=~,ee'Mu-N'Eep :e'Mw+QJ,ec'Mw = 0

e: [it]+div [it] = e: [Eep:(N ® MU- e ' MW)+n; :(N ® MW)]

+N' [.0; :(N ® MU- e ' MW)+Cep :(N ® MW)]

= e : Eep •N . MU - e : Eep 0 e . MW +e : n; .N . MW

(37)

+~,ce·Mu_N·n;:e·MW+QJ,cc·MW = O. (38)

The matrix form of these two sets of homogeneous linear equations,
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(39)

which in short notation reads Q'2. M = 0 can be compared with the first localization
condition (35). The difference (QJ2 _QJI). M = 0 reduces (39) to

(40)

as the second localization condition. The explicit form of this with the material operators
(5), (6) and (12) is

2GcY{e :(N ® M") - 2MW - 21b e: n~kw[Gcn~kw:(N ® M" -e' MW)

+G«N ® M"): nim +l~.s.rr :(N ® MW»)]} = 0 (41)

with b from (14).
Two special simplifications are of interest:

• If a symmetric stress state is assumed (n~kw = 0) (41) is simplified to

(42)

Hence, the vector MW is orthogonal to Nand M" whereby the angle between Nand
M" is evaluated from the first localization condition (35) .

• The second localization condition (40) can also be considered as the symmetry of
the stress rate jumps e: [iJ] = 0 which is a result of the material law with the operators
(5)-(8) and the kinematic conditions. With the restriction that this symmetry state­
ment is extended to the rate jumps of the two deformation fields, the condition

(43)

is equal to the expression

(44)

Multiplied by l/2e it represents a transformation of (42). Hence (41) with (42), (44)
becomes

(45)

Here, the first sum term is equal to zero because the permutation symbol acts on the
symmetric tensor nim so that the general solution of (45) is a vanishing MW correlated
with the coaxiality ofN and M" in (42).

However, the solution of the general form of the second localization condition (40) contains
a vector system M", MW, N whose angles clearly depend on the material constants as well
as on the underlying elasto-plastic stress state.

It has to be emphasized that two aspects must be regarded to get the complete set of
localization conditions. Besides the surface equations, the equations for the bulk material
are also necessary. Nevertheless, in the case ofclassical continua, both points of view render
identic statements so that no difference between them occurs and so only one form of the
localization condition is obtained.
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4. STATIONARY BODY WAVES

To extend the notion of a singularity surface of second order it is appropriate to think
of surfaces with jumps in the second derivatives which are moving through an infinite
continuum. The wave associated with a singularity surface of order two is the acceleration
wave, where disturbances of the second time derivative of the underlying displacement field
occur. This concept is correlated on the Fresnel-Hadamard theorem (see Hadamard, 1901)
which requires that the amplitude A = [A;] of an acceleration wave with the speed t? in the
direction N has to be an eigenvector of the acoustic tensor Q = [Qij], that is

(46)

Vice versa stationary waves with t? = 0 are identical with the onset of localization because
both assumptions are synonymous with the singularity of the tensor Q.

The underlying differential equations in (I) which describe the motion of a disturbance
through a continuum are, in general, hyperbolic as long as the wave speed t? is greater than
zero. The transition to the limiting value t? = 0 causes, therefore, loss of hyperbolicity. So
the loss of hyperbolicity and the loss of ellipticity describe analogous transitions of state.

Similar to the procedure in the previous chapter, two steps have to be carried out to
get the complete set of stationary wave equations concerning a finite body: besides the
conditions in an infinite volume, the equations at its surface are also of interest.

To analyse the propagation of waves in an infinite continuum the equations of motion
and the kinematic conditions (1) and (2) are combined with the elasto-plastic rate eqns (4)
into

The complex waves provide solutions for the linear wave equations in terms of

where k = [kkJ designates the wave number, AU = [Aj], AW = [Aj] the wave amplitudes
with complex components being omitted, and i = j=l.

Additionally, the complex permutation symbol e = ie has to be defined so that the
equation

is fulfilled which guarantees that the special case of a symmetric deformation tensor 8 is
also described in the imaginary space.

Introducing this solution into (47), the two equations are transformed into

which yields the wave velocity c2
• Obviously, (50) represents dispersive relations, and the

wave speed is also a function of the wave number. However, this fact can be neglected in
the further considerations because stationary waves (with c2 = 0) are not influenced by
variations of the wave number.

For stationary non-propagating waves, (50) is expressed by the matrix form QB2 •A = 0
(with A = [AU,AJ) which is, in detail
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[

Q
B,ee
jf

Q~,ce+eikjE'fJ:mfkm
(51)

The sub-operators of the acoustic tensor QB2 are defined analogous to (36) by
QB,xx = k' Fxx ' k where Fxx E {Eep , n;, n;, Cep }.

Next, in the balance equations at the surface (with N j = k i)

(52)

the complex solutions (48) are applied so that

(53)

results. The sub-operators are the same as defined in (51) so that the set of linear homo­
geneous equations reads

[Q
B,ee QB,ec kEep e J[AuJjf jf - j ijkm kmf f = OJ

Q~,ce Q~'cc -kjDtkmekmf AI

or QBl . A = O. With the difference (QB2 - QB1) • A = 0 in terms of

(54)

(55)

the second condition for stationary waves is found. Applying the equalities k = Nand
A = M, the two conditions for stationary waves (54), (55) are identical to the localization
conditions (35) and (40).

Considering classical continuum formulations, the statement (46) may be transformed

(56)

If r! -+ 0, this is equivalent with the well known notion of 'loss of strong ellipticity'.
To develop this condition for Cosserat continua, both systems oflinear equations (50)

and (53) are used. The first one is cast into the form

(57)

with the matrix

(58)

Here, the decomposition of the rotational inertia in (17) has been used. Multiplying AT on
both sides, (57) becomes

(59)

whereby AT. D' A :;; ArAr+lJAiA:" :;:: 1 is the underlying assumption.
The second set of homogeneous linear equations AT. QBI •A = 0 yields



888 A. Dietsche and K. Willam

If this zero expression is used in the evaluation of (57) where c2 = 0 the second statement

(61)

arises which obviously reflects (55).

5. STATIONARY RAYLEIGH WAVES

A special case of boundary condition is obtained if a free surface is considered which
reveals damping in the direction to the bulk material. Hence, only waves parallel to this
surface can propagate free, orthogonal to this surface the wave amplitudes decrease rapidly.

Assumed the damping influence acts along the xl-direction, the complex wave solutions

are correlated with the wave number vector

(63)

where Vj represent real numbers. The additional condition for the complex solution (62) for
exponential decay into the body requires that .3(kl ) = VI ~ O.

A traction free surface requires

(64)

where N j defines the normal vector component of the bounding surface. In Fig. 3, the
surface XI = 0 with orthogonal damping in Xl ~ 0 is shown. In case of stationary waves the
direction vector N is replaced by the wave number vector k R

• With this the boundary
conditions are

(65)

Together with the constitutive rate equations (4), the two set of linear homogeneous
equations get the matrix form QRl •A = 0 or

X2

Fig. 3. Boundary conditions for Rayleigh waves.



where

Elasto-plastic Cosserat continua

Q~,ee = kfE~}klk: = v;E~fIdVk-VIE';r;I1VI +i(v;ElfIlVt +VI EijklVk)
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889

(66)

The complex wave number vector (63) applied to the wave propagation in the bulk
material leads to QR2. A = 0, respectively,

(68)

where the sub-operators are defined as above.
The difference of (QR2 - QRl) •A = 0,

(69)

is, beside (66), the second condition for the occurrence of stationary Rayleigh waves.

6. STATIONARY STONELEY WAVES

Next, the argument of stationary waves is extended to different materials. Assumed
that two half spaces at Xl = 0 are characterized with different material operators an interface
is defined (see Fig, 4).

So, the complex solutions

ul = A'J'± exp [i(k~'± Xk - J~'± k~'± ct)),

wl = Aj'± exp [i(~'± Xk - Jk~'± ~,± ct))

include the wave number vector

(70)

(71)

To enable decay into the body on both sides of the interface, it is necessary that
vi > 0, VI < 0, Further, the compatibility conditions at the interface are

Fig. 4. Boundary conditions for Stoneley waves.
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(72)

With this notation the boundary conditions can be written as

N°"'+ -N°"'- = 0, N° p+ -N° p- = O. (73)

The direction vector N is replaced by k'~ and the rate eqns (4) with the complex solutions
(70), (72) are used so that the matrix form of (73) becomes QSl 0 A = 0 or

(74)

A similar procedure can be applied to both sides of the interface so that stationary
waves are expressed in terms of QS2 0 A = 0 so that

Q~ec _ k~ 0 E~ :e

_(Q~ec_k~ oE~ :e)

Q~cc _ e :E~ :e

+e:O;'+ ok~ -k~ oO~+;e
(75)

_(Q~ce +e; E~ ok~) _(Q~cc+e: E~: e

+e ;0;' - .k~ - k~ 0 0;' - ; e)

The difference of (QS2 _QSl) 0 A = 0 exhibits besides (74) the second condition for station­
ary Stoneley waves

e; [E~ :(k~ ® AU -e 0 A"') +0;'+ :(k~ ® A"')]

= e: [Ee; ;(k~ ® AU -e 0 A"') +0;'- ;(k~ ® A"')]. (76)

7. PHENOMENA: BOUNDARY LAYER EFFECT

To illustrate the effects in a specimen with distinct boundary effects the four point
bending test under plain strain conditions is analyzed (see Fig. 5). Experimental results

I a I

b

F

Fig. 5. Four point bending: problem and meih discretization.
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Fig. 6. Four point bending: Distribution of the generalized curvature.
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were presented by Schafer et al. (1990), for flexural specimens with the dimensions I = 200
mm, a = 170 mm, b = 0.80 mm and h = 22.5 mm. For simplification an augmented von
Mises yield condition F(s, /I) = 0 with symmetric deviatoric stress s is assumed (see de Borst
(1990» to describe the material behavior with an associated flow rule and perfect plasticity
where the critical yield stress is Yo = 310 N/mm2

• The values of the material properties are
Gc = 0.5 G, Ie,s = 1.5 mm, E = 200,000 N/mm2 and v = 0.3. For the numerical simulation,
nine node Cosserat elements are used with three degrees of freedom per node, whereby the
deformation process is subjected to strain control.

Considering the distribution of the curvatures in Fig. 6 (only the central part of the
mesh in Fig. 5 is shown), it is apparent that the harmonic disturbances appear in the plastic
boundary zone which decay rapidly into the body.

These stationary waves of the curvatures are related to stationary waves of the mic­
rorotations. As a result of the analysis of body waves it is found that the direction vectors,
together with the two amplitude vectors, has to form an orthogonal system for the special
case of symmetric stresses t1 (see the extension of (42) to body waves). This argument
applied to Rayleigh waves by replacing N, MU, MW with kR

, AU, AW requires non-vanishing
translational amplitude vectors. However, the observed phenomenon indicates that station­
ary rotational waves indeed appear, but stationary waves in the translational field cannot
be found. So, the second condition for stationary Rayleigh waves is clearly violated.

The stationary curvature waves reflect inhomogeneous plastic deformations which
were detected in the above mentioned experiments. The Uiders wedges initiate in the two
outer layers ofthe flexural specimen as soon as the yield strength is reached during increasing
external load, and they decay towards the neutral axis. It is noteworthy to mention that
finite elements based on classical continuum formulations are not able to show such plastic
wedge deformations which differ entirely from those in tension experiments.

8. CONCLUSIONS

For classical continua it was shown by Hadamard (1901) and others that the for­
mulation of stationary waves and the assumption of a singularity surface of second order
are identical. This could also be shown for Cosserat continua. The analysis of the conditions
for stationary waves in micropolar continua leads to two conditions analogous to the two
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Table I. Localization and stationary wave conditions for
Cosserat continua with symmetric (]

Body

Body
Surface
Interface

Singularity of QJI 1\ e :(N ~ M") = 2M'"

Singularity of QBI 1\ e :(k ~ AU) = 2AW
Singularity of QRI 1\ e :(kR ® A") = 2AW
Singularity of QS' 1\ e: (k; ~ AU) = 2A'"

conditions when localization in the form of a singularity surface is discussed. After explicit
evaluation of the components it is evident that the same requirements appear in both cases.

A simple relation between the vectors N, Mil, M"', resp¢Ctiveiy, k, AU, AW is possible if
the restriction to a symmetric stress tensor t1 is made. Then the second localization condition
respectively the second condition for stationary waves requires the rotational vector to be
orthogonal to the plane of the directional and translational vectors (see also Table I). The
conditions in Table I for the singularity vectors MU, M'" aDd the amplitude vectors AU, AW

concerning body waves are based on the fact that the only possible jumps are described by

[rotu] = e: [s]-e:e'Mw = MW, [rotro] = O. (77)

In case of a stress state with suppresses MW, the vectors Nand MU are coaxial. Then the
bifurcated vector fields u, ro can be derived by scalar potentials pU and pW so that u = gradpU
and ro = gradpw. Hence, both vector fields are laminar, only their normal components can
suffer a jump. Continuous solenoidal vector fields with transversal jumps of their gradients
are therefore excluded, the jumps of the divergence of the vector fields in general are not
equal to zero. This is in accordance with Weingarten's first theorem (Weingarten, 1903)
which correlates the longitudinal jumps of the gradient of a continuous vector field with
the jumps of its divergence.

This fact is also reflected when the argument of stationary waves is considered. Here,
the Hadamard theorem (Hadamard, 190I) states that longitudinal acceleration waves­
identical with the existence of singular surfaces of order tw<>--<:arry jumps in the expansion,
whereby the vorticity remains unchanged.
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